THE FUTURE OF THE APU

Braided Parallelism

Lee Howes
AMD

MTS Fusion System Software

AMD1

THE FUSION APU
ARCHITECTURE

AMD1

FUSION IS HERE

x86 + Radeon APU architectures are available as we speak

For those people in the audience who want to develop for such devices:
i How should we view these architectures?
I What programming models exist or can we expect?

AMD

3 | A4MMC | June 4, 2011 | Public

TAKING A REALISTIC LOOK AT THE APU

GPUs are not magic
i Webve often heard about 100x performance | mpr ove
I These are usually the result of poor CPU code

The APU offers a balance
I GPU cores optimized for arithmetic workloads and latency hiding

I CPU cores to deal with the branchy code for which branch prediction and out of order execution are so
valuable

I Atight integration such that shorter, more tightly bound, sections of code targeted at the different styles
of device can be linked together

I However, not without costs!

AMD

4 | A4MMC | June 4, 2011 | Public

CPUS AND GPUS

Different design goals:
I CPU design is based on maximizing performance of a single thread
I GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:

I Transistors are dedicated to branch prediction, out of order logic and caching to reduce latency to
memory , to allow efficient instruction prefetching and deep pipelines (fast clocks)

GPU use of area:
I Transistors concentrated on ALUs and registers

I Registers store thread state and allow fast switching between threads to cover (rather than reduce)
latency

AMD

5 | AAMMC | June 4, 2011 | Public

HIDING OR REDUCING LATENCY

AAny instruction issued might stall waiting on memory or at least in the computation pipeline

AOut of order logic attempts to issue as many instructions as possible as tightly as possible, filling small
stalls with other instructions from the same thread

SIMD Operation

T 1T [stal

AMD:1

6 | AAMMC | June 4, 2011 | Public

REDUCING MEMORY LATENCY ON THE CPU

ALarger memory stalls are harder to cover
AMemory can be some way from the ALU Lanes 0-3

I Many cycles to access 1 Instruction O
l Stall

HENENE Instruction 1

AMD{1

7 | AAMMC | June 4, 2011 | Public

REDUCING MEMORY LATENCY ON THE CPU

ALarger memory stalls are harder to cover
Lanes 0-3

]-

AMemory can be some way from the ALU

i Many cycles to access Instruction O

ACPU solution is to introduce an
intermediate cache memory

I Minimizes the latency of most
accesses

Instruction 1

I Reduces stalls

AMD{1

8 | AAMMC | June 4, 2011 | Public

HIDING LATENCY ON THE GPU

AMD Radeon HD6970

64-wide wavefronts interleaved on 16-wide vector unit

AAMDO6s GPU designs hide | atency in two
Wave Lanes 0-15 Wave Lanes 16-31 Wave Lanes 32-47 Wave Lanes 48-63

main ways. SIMD Lanes 0-15 SIMD Lanes 0-15 SIMD Lanes 0-15 SIMD Lanes 0-15

I Issue an instruction over multiple cycles I N
i Interleave instructions from multiple O
threads I
]
AMulti-cycle a large vector on a smaller e Wave 2 instruction 0
vector unit]
i Reduces instruction decode overhead I
)]
I Improves throughput
]
]
AMultiple threads fill gaps in instruction]
stream Wave 1 instruction 1 I
ASingle thread latency actually INCREASES
AMD1

9 | AAMMC | June 4, 2011 | Public

GPU CACHES

AGPUs also have caches
I The goal is generally to improve spatial locality rather than temporal

Wave 1 instruction O

_

- Wave 2 instruction O
—

I Different parts of a wide SIMD thread and different threads may require similar locations and
share through the cache

AMD{1

10 | AAMMC | June 4, 2011 | Public

COSTS

The CPU approach:
I Requires large caches to maximize the number of memory operations caught
I Requires considerable transistor logic to support the out of order control

The GPU approach:
I Requires wide hardware vectors, not all code is easily vectorized
I Requires considerable state storage to support active threads
I Note: we need not pretend that OpenCL or CUDA are NOT vectorization

AThe entire point of the design is hand vectorization

These two approaches suit different algorithm designs

They require different hardware implementations

11 | AAMMC | June 4, 2011 | Public

AMD

THE TRADEOFFS IN PICTURES

Instruction decode

AMD Phenom™ || X6: Register state
I 6 cores, 4-way SIMD (ALUSs) ALUs
I Asingle set of registers

I Registers are backed out to memory on a thread switch, and this
is performed by the OS

AMD Radeon™ HD6970:

I 24 cores, 16-way SIMD (plus VLIW issue, but the Phenom
processor does multi-issue too), 64-wide SIMD state

I Multiple register sets (somewhat dynamic)
i 8, 16 threads per core

12 | AAMMC | June 4, 2011 | Public

AMD

COMBINING THE TWO

So what did we see?

é

agrams were vague, but

Di
I Large amount of orange! Lots of register state

I Also more green on the GPU cores

The APU combines the two styles of core:

Cedaro
|]
DEEE| | EEEE
aad Ooa

A

WO

t

i B o b c alikecores,dor exampla n d

E350 has two

The
i 2- and 8-wide physical SIMD

AEEEEEEN
ENEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EENNEEEEN
AEEEEEEN
EEEEEEEN
EEEEEEEN
ANEEEEEN
EEEEEEEN
AEEEEEEN
ENEEEEEN
AEEEEEEN
EEEEEEEN
EEEEEEEN
EENNEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
ANENEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
ENEEEEEDN
EEEEEEEN
EEEEEEEN
ANEEEEEN

IDENEEEED

ooOooooao

13 | AAMMC | June 4, 2011 | Public

THINKING ABOUT
PROGRAMMING

AMD1

OPENCL, CUDA, ARE THESE GOOD MODELS?

Designed for wide data-parallel computation
i Pretty low level
i There is a lack of good scheduling and coherence control

I We see fAcheati ngo -vask progtarnneing model enly bechnees dffiaianewhen we
program it like the vector model it really is, making assumptions about wave or warp synchronicity

However:t hey 0 r éhanlb8E!'t e r
I We have proper scatter/gather memory access

i The | ane wise programming does help: we stild]l
than in a vector language

I We can even program lazily and pretend that a single work item is a thread and yet it still (sortof) works

AMD

15 | AAMMC | June 4, 2011 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What 6s the fastest way to perform an associative
i Take an input array
i Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)
I Iterate to produce a sum in each block
i Reduce across threads
i Vectorize

Tfloatstmﬁoo, 0,0,0)
for(i = n/bto ¢nbr)b)/4)
sum += inputfi]
float scalarSum = sum.x + sum.y + sum.z + sum.w

float reductionValue(0)
for(tin threadCount)

reductionValue += t.sum

AMD
16 | A4MMC | June 4, 2011 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

AWhat 6s the fastest way to perform anGPdssoci ati ve
i Take an input array
i Block it based on the number of threads (8 or so per core, usually, up to 24 cores)
I Iterate to produce a sum in each block
i Reduce across threads
I Vectorize (this bit may be a different kernel dispatch given current models)

Current models ease programming by viewing the vector as a set of scalars
ALUs, apparently though not really independent, with varying degree of
hardware assistance (and hence overhead):

AMD{1

17 | AAMMC | June 4, 2011 | Public

THEY DONOGT SEEM SO DI FFERENT!

/AMore blocks of data
T More cores
T More threads

AWider threads float4 sum(0,0,0,0)

. : for(i=n/4to (n + b)/4)
I 64 on high end AMD GPUs sum += input[i]

I 4/8 on current CPUs float scalarSum = sum.x + sum.y + sum.z + sum.w

AHard to develop efficiently for wide threads)
) e float64 sum(0,¢é ,0)
ALots of state, makes context switching and stacks for(i = n/64 to (n + b)/64)

float scalarSum = waveReduce(sum)

AMD{1

18 | A4MMC | June 4, 2011 | Public

THAT WAS TRI VI ALé MORE GENERALLY, WHAT WORKS

AOn GPU cores:
I We need a lot of data parallelism
I Algorithms that can be mapped to multiple cores and multiple threads per core
I Approaches that map efficiently to wide SIMD units
iSo a nice simple functional fimapo operation i s ¢

Arra

Array.map(Op)

AThis is basically the OpenCL™ model

AMD:1

19 | A4MMC | June 4, 2011 | Public

THAT WAS TRI VI ALé MORE GENERALLY, WHAT WORKS

On CPU cores:
I Some data parallelism for multiple cores

i Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters
ADoes AVX change this?

I High clock rates and caches make serial execution efficient
I So in addition to the simple map (which boils down to a for loop on the CPU) we can do complex task

graphs

@)
O p

p
@)
O o p

p p

@)

p

AMD

20 | AAMMC | June 4, 2011 | Public

SO TO SUMMARIZE THAT

Fine -grain data
parallel Code

.
.
.
.
.
.
;
}
.
.
.
.
.
.
.
.

Loop 16 time
pieces of

Maps very well to
integrated SIMD
dataflow (ie: SSE)

Coarse -grain data
parallel Code
Loop 1M

_.-"times for
1M pieces

j of data

Nested data
parallel Code

. 2D array
Epesentingt

very large
“~._ dataset.
ne |*~s\n ot
very well to

parallelism. Benefits from
closer coupling between
CPU & GPU

Throughput -oriented
data parallel engines

21 | AAMMC | June 4, 2011 | Public

AMD{1

aO)

CUE APU

ATight integration of narrow and wide vector kernels

ACombination of high and low degrees of threading

AFast turnaround
i Negligible kernel launch time
I Communication between kernels
I Shared buffers

AFor example:
I Generating a tree structure on the CPU cores, processing the scene on the GPU cores
I Mixed scale particle simulations (see a later talk)

AMD:1

22 | AAMMC | June 4, 2011 | Public

SO TO SUMMARIZE THAT

Coarse -grain data

Fine -grain data
parallel Code

parallel Code

Loop 1M
_.-"times for
i .-~ 1M pieces
)) /\/) of data
[(L 11] 7]
—— ” N) _'_
X () 2D array
E— \|/ representing
. verylarge
Loop 16 times for 16 “~._ dataset
pieces of data RN

Maps very well to
integrated SIMD

Maps very well to
Throughput -oriented

dataflow (ie: SSE) data parallel engines

AMD{1

23 | AAMMC | June 4, 2011 | Public

HOW DO WE USE THESE DEVICES?

Het erogeneous programming isnodt easy
i Particularly if you want performance

To date:
i CPUs with visible vector ISAs
I GPUs mostly lane-wise (implicit vector) ISAs
I Clunky separate programming models with explicit data movement

How can we target both?
I With a fair degree of efficiency
I True shared memory with passable pointers

Let ds talk about the future of programming madelit

AMD

24 | AAMMC | June 4, 2011 | Public

PROGRAMMING MODELS IN
THE PRESENT

AMD1

INDUSTRY STANDARD API STRATEGY

OpenCLE
Open development platform for multi-vendor heterogeneous architecturesopenCL
The power of AMD Fusion: Leverages CPUs and GPUs for balanced system approach

Broad industry support: Created by architects from AMD, Apple, IBM, Intel, Nvidia, Sony, etc. -
AMD is the first company to provide a
complete OpenCL solution

Momentum: Enthusiasm from mainstream
developers and application software partners

DirectX® 11 DirectCompute
Microsoft distribution

Easiest path to add compute capabilities {0
to existing DirectX applications ‘

AMD
26 | A4MMC | June 4, 2011 | Public

Upen and Custom [ools
High Level

Tools

High Level Language Application Specific

Compilers mibraries

DirectX ® O pen CL E OpenGL

AMD
GPUs CPUs CPUs/GPUs

OpenCL -
ACross-platform development
Alnteroperability with OpenGL and DX
ACPU/GPU backends enable balanced platform approach

27 | AAMMC | June 4, 2011 | Public

AMD

