
THE FUTURE OF THE APU
Braided Parallelism

Lee Howes

AMD

MTS Fusion System Software

2 | A4MMC | June 4, 2011 | Public

THE FUSION APU

ARCHITECTURE

3 | A4MMC | June 4, 2011 | Public

FUSION IS HERE

Áx86 + Radeon APU architectures are available as we speak

ÁFor those people in the audience who want to develop for such devices:

ïHow should we view these architectures?

ïWhat programming models exist or can we expect?

4 | A4MMC | June 4, 2011 | Public

TAKING A REALISTIC LOOK AT THE APU

ÁGPUs are not magic

ïWeôve often heard about 100x performance improvements

ïThese are usually the result of poor CPU code

ÁThe APU offers a balance

ïGPU cores optimized for arithmetic workloads and latency hiding

ïCPU cores to deal with the branchy code for which branch prediction and out of order execution are so

valuable

ïA tight integration such that shorter, more tightly bound, sections of code targeted at the different styles

of device can be linked together

ïHowever, not without costs!

5 | A4MMC | June 4, 2011 | Public

CPUS AND GPUS

ÁDifferent design goals:

ïCPU design is based on maximizing performance of a single thread

ïGPU design aims to maximize throughput at the cost of lower performance for each thread

ÁCPU use of area:

ïTransistors are dedicated to branch prediction, out of order logic and caching to reduce latency to

memory , to allow efficient instruction prefetching and deep pipelines (fast clocks)

ÁGPU use of area:

ïTransistors concentrated on ALUs and registers

ïRegisters store thread state and allow fast switching between threads to cover (rather than reduce)

latency

6 | A4MMC | June 4, 2011 | Public

HIDING OR REDUCING LATENCY

ÁAny instruction issued might stall waiting on memory or at least in the computation pipeline

ÁOut of order logic attempts to issue as many instructions as possible as tightly as possible, filling small

stalls with other instructions from the same thread

Stall

SIMD Operation

7 | A4MMC | June 4, 2011 | Public

REDUCING MEMORY LATENCY ON THE CPU

ÁLarger memory stalls are harder to cover

ÁMemory can be some way from the ALU

ïMany cycles to access
Instruction 0

Instruction 1

Stall

Lanes 0-3

Memory

8 | A4MMC | June 4, 2011 | Public

REDUCING MEMORY LATENCY ON THE CPU

ÁLarger memory stalls are harder to cover

ÁMemory can be some way from the ALU

ïMany cycles to access

ÁCPU solution is to introduce an

intermediate cache memory

ïMinimizes the latency of most

accesses

ïReduces stalls

Instruction 0

Instruction 1

Stall

Lanes 0-3

Cache

Memory

9 | A4MMC | June 4, 2011 | Public

HIDING LATENCY ON THE GPU

ÁAMDôs GPU designs hide latency in two

main ways:

ïIssue an instruction over multiple cycles

ïInterleave instructions from multiple

threads

ÁMulti-cycle a large vector on a smaller

vector unit

ïReduces instruction decode overhead

ïImproves throughput

ÁMultiple threads fill gaps in instruction

stream

ÁSingle thread latency actually INCREASES

Wave 1 instruction 1

Wave 2 instruction 0

Wave Lanes 0-15

SIMD Lanes 0-15

Wave Lanes 16-31

SIMD Lanes 0-15

Wave Lanes 32-47

SIMD Lanes 0-15

Wave Lanes 48-63

SIMD Lanes 0-15

Wave 1 instruction 0

AMD Radeon HD6970

64-wide wavefronts interleaved on 16-wide vector unit

10 | A4MMC | June 4, 2011 | Public

GPU CACHES

ÁGPUs also have caches

ïThe goal is generally to improve spatial locality rather than temporal

ïDifferent parts of a wide SIMD thread and different threads may require similar locations and

share through the cache

CacheMemory

Wave 2 instruction 0

Wave 1 instruction 0

11 | A4MMC | June 4, 2011 | Public

COSTS

ÁThe CPU approach:

ïRequires large caches to maximize the number of memory operations caught

ïRequires considerable transistor logic to support the out of order control

ÁThe GPU approach:

ïRequires wide hardware vectors, not all code is easily vectorized

ïRequires considerable state storage to support active threads

ïNote: we need not pretend that OpenCL or CUDA are NOT vectorization

ÁThe entire point of the design is hand vectorization

ÁThese two approaches suit different algorithm designs

ÁThey require different hardware implementations

12 | A4MMC | June 4, 2011 | Public

THE TRADEOFFS IN PICTURES

ÁAMD PhenomTM II X6:

ï6 cores, 4-way SIMD (ALUs)

ïA single set of registers

ïRegisters are backed out to memory on a thread switch, and this

is performed by the OS

ÁAMD RadeonTM HD6970:

ï24 cores, 16-way SIMD (plus VLIW issue, but the Phenom

processor does multi-issue too), 64-wide SIMD state

ïMultiple register sets (somewhat dynamic)

ï8, 16 threads per core

Instruction decode

Register state

ALUs

13 | A4MMC | June 4, 2011 | Public

COMBINING THE TWO

ÁSo what did we see?

ïDiagrams were vague, buté

ïLarge amount of orange! Lots of register state

ïAlso more green on the GPU cores

ÁThe APU combines the two styles of core:

ïThe E350 has two ñBobcatò cores and two ñCedarò-like cores, for example

ï2- and 8-wide physical SIMD

14 | A4MMC | June 4, 2011 | Public

THINKING ABOUT

PROGRAMMING

15 | A4MMC | June 4, 2011 | Public

OPENCL, CUDA, ARE THESE GOOD MODELS?

ÁDesigned for wide data-parallel computation

ïPretty low level

ïThere is a lack of good scheduling and coherence control

ïWe see ñcheatingò all the time: the lane-wise programming model only becomes efficient when we

program it like the vector model it really is, making assumptions about wave or warp synchronicity

ÁHowever: theyôre better than SSE!

ïWe have proper scatter/gather memory access

ïThe lane wise programming does help: we still have to think about vectors, but itôs much easier to do

than in a vector language

ïWe can even program lazily and pretend that a single work item is a thread and yet it still (sortof) works

16 | A4MMC | June 4, 2011 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

ÁWhatôs the fastest way to perform an associative reduction across an array on a CPU?

ïTake an input array

ïBlock it based on the number of threads (one per core usually, maybe 4 or 8 cores)

ïIterate to produce a sum in each block

ïReduce across threads

ïVectorize

float sum(0)

for(i = n to n + b)

sum += input[i]

float reductionValue(0)

for(t in threadCount)

reductionValue += t.sum

float4 sum(0, 0, 0, 0)

for(i = n/4 to (n + b)/4)

sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w

17 | A4MMC | June 4, 2011 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

ÁWhatôs the fastest way to perform an associative reduction across an array on a GPU?

ïTake an input array

ïBlock it based on the number of threads (8 or so per core, usually, up to 24 cores)

ïIterate to produce a sum in each block

ïReduce across threads

ïVectorize (this bit may be a different kernel dispatch given current models)

float sum(0)

for(i = n to n + b)

sum += input[i]

float reductionValue(0)

for(t in threadCount)

reductionValue += t.sum

float64 sum(0, é, 0)

for(i = n/64 to (n + b)/64)

sum += input[i]

float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars

ALUs, apparently though not really independent, with varying degree of

hardware assistance (and hence overhead):

float sum(0)

for(i = n/64 to (n + b)/64; i += 64)

sum += input[i]

float scalarSum = waveReduceViaLocalMemory(sum)

18 | A4MMC | June 4, 2011 | Public

THEY DONôT SEEM SO DIFFERENT!

ÁMore blocks of data

ïMore cores

ïMore threads

ÁWider threads

ï64 on high end AMD GPUs

ï4/8 on current CPUs

ÁHard to develop efficiently for wide threads

ÁLots of state, makes context switching and stacks

problematic

float64 sum(0, é, 0)

for(i = n/64 to (n + b)/64)

sum += input[i]

float scalarSum = waveReduce(sum)

float4 sum(0, 0, 0, 0)

for(i = n/4 to (n + b)/4)

sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w

19 | A4MMC | June 4, 2011 | Public

THAT WAS TRIVIALé MORE GENERALLY, WHAT WORKS WELL?

ÁOn GPU cores:

ïWe need a lot of data parallelism

ïAlgorithms that can be mapped to multiple cores and multiple threads per core

ïApproaches that map efficiently to wide SIMD units

ïSo a nice simple functional ñmapò operation is great!

ÁThis is basically the OpenCLtm model

Array

O

p

O

p

O

p é

Array.map(Op)

20 | A4MMC | June 4, 2011 | Public

THAT WAS TRIVIALé MORE GENERALLY, WHAT WORKS WELL?

ÁOn CPU cores:

ïSome data parallelism for multiple cores

ïNarrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters

ÁDoes AVX change this?

ïHigh clock rates and caches make serial execution efficient

ïSo in addition to the simple map (which boils down to a for loop on the CPU) we can do complex task

graphs

O

p

O

p

O

p

O

p

O

p

O

p

21 | A4MMC | June 4, 2011 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

é
é

é
é

i,j =0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse - grain data
parallel Code

Maps very well to
Throughput -oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

é
é

Loop 16 times for 16
pieces of data

Fine - grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from

closer coupling between
CPU & GPU

Discrete GPU configurations suffer from

communication latency.

Nested data parallel/braided parallel code

benefits from close coupling.

Discrete GPUs donôt provide it well.

But each individual core isnôt great at certain

types of algorithmé

22 | A4MMC | June 4, 2011 | Public

CUE APU

ÁTight integration of narrow and wide vector kernels

ÁCombination of high and low degrees of threading

ÁFast turnaround

ïNegligible kernel launch time

ïCommunication between kernels

ïShared buffers

ÁFor example:

ïGenerating a tree structure on the CPU cores, processing the scene on the GPU cores

ïMixed scale particle simulations (see a later talk)

CPU

kernel

GPU

kernel

Data

23 | A4MMC | June 4, 2011 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

é
é

é
é

i,j =0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse - grain data
parallel Code

Maps very well to
Throughput -oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

é
é

Loop 16 times for 16
pieces of data

Fine - grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from

closer coupling between
CPU & GPU

24 | A4MMC | June 4, 2011 | Public

HOW DO WE USE THESE DEVICES?

ÁHeterogeneous programming isnôt easy

ïParticularly if you want performance

ÁTo date:

ïCPUs with visible vector ISAs

ïGPUs mostly lane-wise (implicit vector) ISAs

ïClunky separate programming models with explicit data movement

ÁHow can we target both?

ïWith a fair degree of efficiency

ïTrue shared memory with passable pointers

ÁLetôs talk about the future of programming modelsé

25 | A4MMC | June 4, 2011 | Public

PROGRAMMING MODELS IN

THE PRESENT

26 | A4MMC | June 4, 2011 | Public

INDUSTRY STANDARD API STRATEGY

OpenCLÊ

ÁOpen development platform for multi-vendor heterogeneous architectures

ÁThe power of AMD Fusion: Leverages CPUs and GPUs for balanced system approach

ÁBroad industry support: Created by architects from AMD, Apple, IBM, Intel, Nvidia, Sony, etc.

AMD is the first company to provide a

complete OpenCL solution

ÁMomentum: Enthusiasm from mainstream

developers and application software partners

DirectX® 11 DirectCompute

ÁMicrosoft distribution

ÁEasiest path to add compute capabilities

to existing DirectX applications

27 | A4MMC | June 4, 2011 | Public

Moving Past Proprietary Solutions for Ease of Cross-

Platform Programming

Open and Custom Tools

High Level Language
Compilers

High Level
Tools Application Specific

Libraries

OpenCL -

ÅCross-platform development

ÅInteroperability with OpenGL and DX

ÅCPU/GPU backends enable balanced platform approach

Industry Standard Interfaces

OpenCLÊDirectX ® OpenGL

AMD
GPUs

Other
CPUs/GPUs

AMD
CPUs

