
1 of 22

OpenVideo Decode (OVD) API

1 Overview
This document specifies the OpenVideo Decode (OVD) API definitions. This API is designed to
provide platform-independent video codec functions using hardware accelerators.

OpenVideo Decode API has the following design goals and highlights:

• OpenVideo Decode API is defined for bitstream based video decoding.

• This version of the Open Video Decode API supports H.264 decode.

• OpenVideo Decode API is extendable to support other standard video codecs.

• OpenVideo API may be extended to support hardware accelerated encoding functions in the
future.

• The number of accelerated multiple video streams is not limited by the API but may be limited
by the hardware accelerator.

OpenVideo supports the GPU fixed-function hardware Unified Video Decoder (UVD), which
allows interoperability with OpenCL through a common API (OpenDecode API). OpenVideo
provides the way for all OpenCL-based video applications to access the fixed-function hardware
in GPUs. The video application can use OpenVideo as part of its video pipeline for video
playback, video editing, or video transcoding.

The OpenDecode API is the part of OpenVideo that allows applications to use the GPU’s UVD
engine. OpenVideo supports full bitstream decoding acceleration. The decoded output then can
be used for either displaying directly using the GPU, or for other post-processing operations
through Open CL kernels run on the GPU shaders (post-process filtering or transcoding
operations). The OpenVideo API is fully interoperable with the OpenCL API: it allows for shared
surfaces between the two domains.

Figure 1 illustrates the various pipeline possibilities for transcoding video.

2 of 22 Open Video Decode API

Figure 1 Video Pipeline Possibilities with Multiple GPUs and Multiple APIs

The developer can use the OpenVideo APIs to access fixed-function codec engines in OpenCL.

2 Interoperability of OpenCL and OpenVideo
The OVD API operates with other domains, such as OpenCL. The domain API provides functions
for application to obtain the platform-independent handle that can be used by another domain
API. AMD OpenCL provides extension functions to obtain the platform independent handle that
can be used by OpenVideo. The OpenCL extension functions used to obtain the platform-
independent handle for context, memory object, and event object are briefly described in the
following subsections.

2.1 Platform Context
OPContextHandle clGetPlatformContextHandle(cl_context OpenCLContextHandle);

clGetPlatformContextHandle retrieves a domain-independent context handle from an OpenCL
context.

2.2 Platform Memory Object
OPMemHandle clGetPlatformMemHandle(cl_mem OpenCLMemoryHandle);

clGetPlatformMemHandle retrieves a domain-independent memory handle from an OpenCL
memory object.

2.3 Platform Event Object
OPEventHandle clGetPlatformEventHandle(cl_event OpenCLEventHandle);

clGetPlatformEventHandle retrieves a domain-independent handle from an OpenCL event
object.

Platform handles can be used by OpenVideo platform functions to obtain the OpenVideo objects.

This section describes the high-level operation sequence in an application by using OVD and
OpenCL APIs. The flow diagram shown in Figure 2 shows a simple application using
OpenDecode API to decode the video stream and OpenCL to render the decoded video.

DecodeApp

API

HW

OpenDecode

UVD

OpenCL

Post-Processing (filter, color
space conversion) Presentation

OpenGL

Shader Engine

Open Video Decode API 3 of 22

Figure 2 Operational Flow of OpenVideo Decode API with OpenCL Processing

OVDecodeCreateSes s ion

OVDecodeDes troySes s ion

OVDecodePicture

START

END

OVDecodeGetDeviceCap

OVDecodeGetDeviceInfo

Create OVD Handle

Releas e OVD Handle

OVDecodeAcquireObject

OVDecodeReleas eObject

Device Enumeration
Capability Discovery

Create OVDecode
Session

Decoding

YES

Destroy OVDecode
Session

NO
End?

OpenCL Proces s ing

EnqueueAcquireObject

EnqueueReleas eObject

OpenCL Processing

Create Platform Res ource

Create CL Contex t

OpenCL Create Context
& Platform Resources

Des troy Platform Res ource

Des troy CL Contex t

OpenCL Destroy
Context & Resources

4 of 22 Open Video Decode API

3 OpenVideo Decode API Functions
The functions described in this section are grouped by use. Table 1 lists these functions in
alphabetic order.

Table 1 Function Listing

Function Page

OVAcquireObject 6

OVCreateOVDHandleFromOPHandle 5

OVDecodeCreateOVDEventFromOPEventHandle 7

OVDecodeCreateSession 8

OVDecodeDestroySession 10

OVDecodeGetDeviceCap 5

OVDecodeGetDeviceInfo 4

OVDecodePicture 9

OVDecodeReleaseOVDEventHandle 7

OVReleaseObject 6

OVReleaseOVDHandle 6

OVDecodeGetDeviceInfo

Prerequisite typedef struct {
unsigned int device_id;
unsigned int max_decode_stream;
unsigned int decode_cap_size;

} ovdecode_device_info;

Description Queries the available decode device. The ovdecode_device_info contains a unique device_id and the size
of the decode_cap structure for each available device. The decode_cap_size specifies the data structure size
of decode_cap in OVDecodeGetDeviceCap that the application must provide when it calls this function.

Return OVresult OVDecodeGetDeviceInfo(
unsigned int *num_device,
ovdecode_device_info *device_info

);

OVresult 1 = available.
0 = unavailable.

Open Video Decode API 5 of 22

OVDecodeGetDeviceCap

Prerequisite // OpenVideo Decode Profile
typedef enum
{

OVD_H264_BASELINE_41 = 1,// H.264 bitstream acceleration baseline profile up to level 4.1
OVD_H264_MAIN_41, // H.264 bitstream acceleration main profile up to level 4.1
OVD_H264_HIGH_41, // H.264 bitstream acceleration high profile up to level 4.1
OVD_H264_BASELINE_51, // H.264 bitstream acceleration baseline profile up to level 5.1
OVD_H264_MAIN_51, // H.264 bitstream acceleration main profile up to level 5.1
OVD_H264_HIGH_51, // H.264 bitstream acceleration high profile up to level 5.1
OVD_H264_STEREO_HIGH // H.264 bitstream acceleration stereo high profile
OVD_VC1_SIMPLE, // VC-1 bitstream acceleration simple profile
OVD_VC1_MAIN, // VC-1 bitstream acceleration main profile
OVD_VC1_ADVANCED, // VC-1 bitstream acceleration advanced profile

} ovdecode_profile;

// OpenVideo Decode Format
typedef enum
{
OVD_NV12_INTERLEAVED = 1,// NV12 Linear Interleaved

} ovdecode_format;

typedef struct {
ovdecode_profileprofile; // codec information about the decode capability
ovdecode_format output_format; // decode output format supported in this device

} ovdecode_cap;

Description Queries the decoder capability, including codec information and output format, that the device can support.The
decoder capability is obtained from the specified device_id.

Return OVresult OVDecodeGetDeviceCap (
unsigned int device_id,
unsigned int num_of_decode_cap,
ovdecode_cap *decode_cap_list

);

OVresult 1 = available.
0 = unavailable.

OVCreateOVDHandleFromOPHandle

Prerequisite #define OPMemHandle void *

Description Creates the decode handle from the platform memory handle. The decode handle can be used in the
OVDecodePicture function as the output decode buffer. The application can create multiple output buffers to
queue the decode job.

Return ov_handle OVCreateOVDHandleFromOPHandle (
OPMemHandle platform_memhandle

);

OVresult 1 = available.
0 = unavailable.

6 of 22 Open Video Decode API

OVReleaseOVDHandle

Prerequisite #define ov_handle HANDLE

Description Releases the decode handle. After release, the handle is invalid and cannot be used for decode picture.

Return OVresult OVReleaseOVDHandle (
ov_handle decode_handle

);

OVresult 1 = success.
0 = fail.

OVAcquireObject

Prerequisite #define ov_session void *

#define ovd_event void *

Description Acquires the memory objects that have been created from OpenCL. These objects must be acquired before
they can be used by the decode function.

Return OVresult OVAcquireObject (
ov_session session,
unsigned int num_handle,
ov_handle *decode_handle,
unsigned int num_event_in_wait_list,
ovd_event *event_wait_list,
ovd_event *event

);

OVresult 1 = available.
0 = unavailable.

OVReleaseObject

Prerequisite #define ov_session void *

#define ovd_event void *

Description Releases the memory objects created from OpenCL. The objects must be released before they can be used
by OpenCL.

Return OVresult OVReleaseObject (
ov_session session,
unsigned int num_handle,
ov_handle *decode_handle,
unsigned int num_event_in_wait_list,
ovd_event *event_wait_list,
ovd_event *event

);

OVresult 1 = success.
0 = fail.

Open Video Decode API 7 of 22

OVDecodeCreateOVDEventFromOPEventHandle

Prerequisite #define OPEventHandle HANDLE

Description Creates the OVD event handle from the platform event handle.

Return OVresult OVDecodeCreateOVDEventFromOPEventHandle (
OPEventHandle platform_eventhandle

);

OVresult 1 = available.
0 = unavailable.

OVDecodeReleaseOVDEventHandle

Prerequisite #define ovd_event void *

Description Releases the OVD event handle.

Return OVresult OVDecodeReleaseOVDEventFromOPEventHandle (
ovd_event ovd_event

);

OVresult 1 = success.
0 = fail.

8 of 22 Open Video Decode API

OVDecodeCreateSession

Prerequisite #define OPContext void *

// OpenVideo Decode Profile
typedef enum
{
OVD_H264_BASELINE_41 = 1,// H.264 bitstream acceleration baseline profile up to level 4.1
OVD_H264_MAIN_41, // H.264 bitstream acceleration main profile up to level 4.1
OVD_H264_HIGH_41, // H.264 bitstream acceleration high profile up to level 4.1
OVD_H264_BASELINE_51, // H.264 bitstream acceleration baseline profile up to level 5.1
OVD_H264_MAIN_51, // H.264 bitstream acceleration main profile up to level 5.1
OVD_H264_HIGH_51, // H.264 bitstream acceleration high profile up to level 5.1
OVD_H264_STEREO_HIGH // H.264 bitstream acceleration stereo high profile
OVD_VC1_SIMPLE, // VC-1 bitstream acceleration simple profile
OVD_VC1_MAIN, // VC-1 bitstream acceleration main profile
OVD_VC1_ADVANCED, // VC-1 bitstream acceleration advanced profile
} ovdecode_profile;

// OpenVideo Decode Format
typedef enum
{
OVD_NV12_INTERLEAVED = 1,// NV12 Linear Interleaved
} ovdecode_format;

Description Creates the decode session for each decoding stream. After the session creation, the decoder can accept
the decode picture job from the application. For decoding multiple streams, the application can create multiple
sessions within the same platform context; the application is responsible for managing the input and output
buffers for each decode session.

Return ov_session OVDecodeCreateSession (
OPContext platform_context,
unsigned int device_id,
ovdecode_profile profile,
ovdecode_format output_format,
unsigned int output_width,
unsigned int output_height

);

OVresult 1 = ov_session available.
0 = unavailable.

Open Video Decode API 9 of 22

OVDecodePicture

Prerequisite typedef struct
{
unsigned int codec_type;
unsigned int profile;
unsigned int level;
unsigned int width_in_mb;
unsigned int height_in_mb;
unsigned int decode_flag; // Reserved for future features - always 0
void *reserved_reference [16]; // Reserved - Not used for bitstream decoding
unsigned int reserved [15]; // Reserved for future features - always 0
} ovd_picture_parameter_1;

#define ovd_bitstream_data unsigned char *

typedef struct
{
unsigned int SliceBitsInBuffer;
unsigned int SliceDataLocation;
unsigned int SliceBytesInBuffer;
unsigned int reserved[5];
} ovd_slice_data_ctrl;

#define ov_session void *

#define ov_handle HANDLE

Description Decodes a single picture. For decoding multiple streams, the decode picture jobs from different streams can
be interleaved in any order.

Return OVresult OVDecodePicture (
ov_session session,
ovd_picture_parameter *picture_parameter_1,
void *picture_parameter_2,
unsigned int picture_parameter_2_size,
ovd_bitstream_data *bitstream_data,
unsigned int bitstream_data_size,
ovd_slice_data_control *slice_data_control,
unsigned int slice_data_control_size,
ov_handle output_handle,
unsigned int num_event_in_wait_list,
ovd_event *event_wait_list,
ovd_event *event,
unsigned int picture_id

);

OVresult 1 = success.
0 = fail.

10 of 22 Open Video Decode API

4 Decode Data Buffers
OVDecodePicture requires four decode buffer types for bitstream decoding:

• OVD_PICTURE_PARAMETER_1

• PICTURE_PARAMETER_2

• OVD_BITSTREAM_DATA

• OVD_SLICE_CONTROL_DATA

These buffer types are described in the following subsections.

NOTE: The compressed data buffers have a different data/bit layout for H.264, VC-1, and
MPEG2. Read the spec carefully and implement the appropriate buffer for each codec

4.1 OVD_PICTURE_PARAMETER_1

This buffer contains the common information of the current decoded picture for all supported
codecs. This structure definition is defined as:

typedef struct
{

unsigned int codec_type;
unsigned int profile;
unsigned int level;
unsigned int width_in_mb;
unsigned int height_in_mb;

unsigned int decode_flag; // Reserved for future features - always 0
void *reserved_reference [16]; // Reserved - Not used for bitstream decoding
unsigned int reserved [15]; // Reserved for future features - always 0

} ovd_picture_parameter_1;

The description of each field in the data structure is defined as follows:

OVDecodeDestroySession

Prerequisite #define ov_session void *

Description Destroys the decode session. Destroying a session releases all associated hardware resources, and no
further decoding work can be performed with the session.

Return OVresult OVDecodeDestroySession (
ov_session session

);

OVresult 1 = success.
0 = fail.

Open Video Decode API 11 of 22

Table 2 Data Structure Fields

4.2 PICTURE_PARAMETER_2

This buffer contains the codec-specific information of the current decoded picture. The application
must pass in the corresponding picture_parameter_2 structure in the OVDecodePicture call
based on the codec type of the decode picture. The picture_parameter_2 structures for each
codec are defined as described in the following subsections.

Parameter Description

codec_type Specifies the codec type of the current decode picture
1 = H.264
2 = VC-1

profile Specifies a subset of algorithmic features and limits that must be supported by all decoders conform-
ing to that profile.

All H.264 profile types are specified in the H.264 specification.
All VC-1 profile types are specified in the VC-1 specification.

AMD UVD hardware acceleration supports the following profiles.

H.264:
1 = Baseline profile (for H264 field profile_idc = 66)
2 = Main profile (for H264 field profile_idc = 77)
3 = High profile (for H264 field profile_idc = 100)

VC-1:
4 = Simple profile (for the VC-1 field PROFILE = 0)
5 = Main profile (for the VC-1 field PROFILE = 1)
6 = Advanced profile (for the VC-1 field PROFILE = 3)

level Specifies restrictions on bitstreams, as well as limits on the capabilities needed to decode the bit-
streams. Levels are specified within each profile.

width_in_mb Specifies the width of each decoded picture in units of macroblocks.

height_in_mb Specifies the height of each decoded picture in units of macroblocks.

decode_flag Reserved for future usage, always 0.

reserved_reference
[16]

Not used, always 0.

reserved [15] Not used, always 0.

12 of 22 Open Video Decode API

4.2.1 H.264 picture_parameter_2 Structure

typedef struct
{

union{
struct {

unsigned int residual_colour_transform_flag : 1;
unsigned int delta_pic_always_zero_flag : 1;
unsigned int gaps_in_frame_num_value_allowed_flag : 1;
unsigned int frame_mbs_only_flag : 1;
unsigned int mb_adaptive_frame_field_flag : 1;
unsigned int direct_8x8_inference_flag : 1;
unsigned int sps_reserved : 26;

} sps_flag;
unsigned intflag;

}sps_info;

union {
struct {

unsigned int entropy_coding_mode_flag : 1;
unsigned int pic_order_present_flag : 1;
unsigned int weighted_pred_flag : 1;
unsigned int weighted_bipred_idc : 2;
unsigned int deblocking_filter_control_present_flag : 1;
unsigned int constrained_intra_pred_flag : 1;
unsigned int redundant_pic_cnt_present_flag : 1;
unsigned int transform_8x8_mode_flag : 1;
unsigned int pps_reserved : 23;

} pps_flag;
unsigned intflag;

pps_info;

unsigned int picture_structure;
unsigned char chroma_format;
unsigned char bit_depth_luma_minus8;
unsigned char bit_depth_chroma_minus8;
unsigned char log2_max_frame_num_minus4;

unsigned char pic_order_cnt_type;
unsigned char log2_max_pic_order_cnt_lsb_minus4;
unsigned char num_ref_frames;
unsigned char reserved_8bit;

char pic_init_qp_minus26;
char pic_init_qs_minus26;
char chroma_qp_index_offset;
char second_chroma_qp_index_offset;

unsigned char num_slice_groups_minus1;
unsigned char slice_group_map_type;
unsigned char num_ref_idx_l0_active_minus1;
unsigned char num_ref_idx_l1_active_minus1;

unsigned short slice_group_change_rate_minus1;
unsigned short reserved_16bit;

unsigned char scaling_lists_4x4[6][16];
unsigned char scaling_lists_8x8[2][64];

unsigned int frame_num;
unsigned int frame_num_list[16];// bit 31 is used to indicate long/short term
int curr_field_order_cnt_list[2];
int field_order_cnt_list[16][2];

int intra_flag;

Open Video Decode API 13 of 22

Table 3 through Table 6 describe each field in the H264_picture_parameter_2 data structure.
Unless indicated otherwise, the parameters in Table 3 correspond to the same-named fields in
the H.264/ACV1 specification.

struct {
unsigned int numViews;
unsigned int viewID0;
mvcElement_t mvcElements [1]; // Allocate numViews-1 elements here

} mvc;

unsigned int reserved[128];

} H264_picture_parameter_2;

typedef struct
{

unsigned short viewOrderIndex;
unsigned short viewID;
unsigned short numOfAnchorRefsInL0;
unsigned short viewIDofAnchorRefsInL0[15];
unsigned short numOfAnchorRefsInL1;
unsigned short viewIDofAnchorRefsInL1[15];
unsigned short numOfNonAnchorRefsInL0;
unsigned short viewIDofNonAnchorRefsInL0[15];
unsigned short numOfNonAnchorRefsInL1;
unsigned short viewIDofNonAnchorRefsInL1[15];

} mvcElement_t;

Table 3 sps_info Structure Flags

Parameter Description

residual_colour_transform_flag 1 = residual color transform is applied.
0 = residual color transform is not applied.

When residual_colour_transform_flag is not present, it is assumed to be 0.

delta_pic_order_always_zero_flag 1 = delta_pic_order_cnt[0] and delta_pic_order_cnt[1] are not present
in the slice headers of the sequence and are assumed to be 0.

0 = delta_pic_order_cnt[0] is present in the slice headers of the sequence,
and that delta_pic_order_cnt[1] can be present in the slice headers of the
sequence.

gaps_in_frame_num_value_allowed_flag Specifies the allowed values of frame_num and the decoding process in case of an
inferred gap between values of frame_num.

frame_mbs_only_flag 1 = Every coded picture of the coded video sequence is a coded frame containing
only frame macroblocks.

0 = Coded pictures of the coded video sequence can be coded fields or coded
frames.

mb_adaptive_frame_field_flag 1 = Specifies the possible use of switching between frame and field macroblocks
within frames.

0 = Specifies no switching between frame and field macroblocks within a picture.

When the mb_adaptive_frame_field_flag is not present, it is assumed to be 0.

direct_8x8_inference_flag Specifies the method used in the derivation process for luma motion vectors for
B_Skip, B_Direct_16x16, and B_Direct_8x8.

When frame_mbs_only_flag is equal to 0, direct_8x8_inference_flag is 1.

sps_reserved Reserved. Must be 0.

14 of 22 Open Video Decode API

Unless indicated otherwise, the parameters in Table 4 correspond to the same-named fields in
the H.264/ACV1 specification.

Table 4 pps_info Structure Flags

Parameter Description

entropy_coding_mode_flag Selects the entropy decoding method.

0 = Exp-Golomb coded or CAVLC.
1 = CABAC.

pic_order_present_flag 1 = Picture-order count-related syntax elements are in the slice headers.
0 = Picture-order count-related syntax elements are not in the slice headers.

weighted_pred_flag 1 = Weighted prediction applied to P and SP slices.
0 = Weighted prediction not applied to P and SP slices.

weighted_bipred_idc The following are valid values.
0 = the default weighted prediction is applied to B slices.
1 = explicit weighted prediction is applied to B slices.
2 = implicit weighted prediction is applied to B slices.

deblocking_filter_control_presen
t_flag

1 = The syntax elements controlling the characteristics of the deblocking filter is in the
slice header.

0 = The syntax elements controlling the characteristics of the deblocking filter is not in
the slice headers, and their inferred values are in effect.

constrained_intra_pred_flag 1 = Constrained intra prediction: prediction of macroblocks coded using Intra-macroblock
prediction modes only uses residual data and decoded samples from I or SI macrob-
lock types.

0 = Intra prediction allows usage of residual data and decoded samples of neighboring
macroblocks coded using Inter-macroblock prediction modes.

redundant_pic_cnt_present_flag 1 = The redundant_pic_cnt syntax element is in all slice headers, data partitions B, and
data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set.

0 = The redundant_pic_cnt syntax element is not in slice headers, data partitions B, or
data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set.

transform_8x8_mode_flag 1 = The 8x8 transform decoding process can be in use.
0 = The 8x8 transform decoding process is not in use.

When the transform_8x8_mode_flag is not present, it is assumed to be 0.

pps_reserved Reserved field. Must be 0.

picture_structure Specifies the picture type.

0 = Frame.
1 = Top field.
2 = Bottom field.

chroma_format Specifies the chroma sampling relative to luma sampling.

0 = monochrome
1 = 4:2:0
2 = 4:2:2
3 = 4:4:4

When chroma_format is not present, it is assumed to be equal to 1 (4:2:0 chroma
format).

Open Video Decode API 15 of 22

bit_depth_luma_minus8 Specifies the bit depth of the samples of the luma array and the value of the luma quan-
tization parameter range offset.

BitDepthY = 8 + bit_depth_luma_minus8
QpBdOffsetY = 6 * bit_depth_luma_minus8

When not present, it is assumed to be equal to 0.

The value must be from 0 to 4, inclusive.

bit_depth_chroma_minus8 Specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantization parameter range offset, as specified by:

BitDepthC = 8 + bit_depth_chroma_minus8
QpBdOffsetC = 6 * (bit_depth_chroma_minus8 + residual_colour_transform_flag)

When bit_depth_chroma_minus8 is not present, it is assumed to be equal to 0. The
value must be in the range 0 to 4, inclusive.

log2_max_frame_num_minus4 Specifies the value of the variable MaxFrameNum that is used in frame_num related deri-
vations as follows:

MaxFrameNum = 2 power of (log2_max_frame_num_minus4 + 4)

The value must be in the range 0 to 12, inclusive.

pic_order_cnt_type Specifies the method to decode picture order count (POC).
The value must be in the range 0 to 2, inclusive.

log2_max_pic_order_cnt_lsb_minus
4

Specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding pro-
cess for picture order count. See the H.264 specification, subclause 8.2.1:

MaxPicOrderCntLsb = 2 (log2_max_pic_order_cnt_lsb_minus4 + 4)

The value must be in the range 0 to 12, inclusive.

num_ref_frames Specifies the maximum number of short-term and long-term reference frames, comple-
mentary reference field pairs, and non-paired reference fields that can be used by the
decoding process for inter prediction of any picture in the sequence. This function also
determines the size of the sliding window operation. The value must be in the range 0 to
MaxDpbSize, inclusive.

reserved_8bit Reserved. Must be 0. No correspondence with H.264 specification.

pic_init_qp_minus26 Specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified
at the slice layer when a non-zero value of slice_qp_delta is decoded; it is modified
further when a non-zero value of mb_qp_delta is decoded at the macroblock layer. The
value must be in the range (26 + QpBdOffsetY) to +25, inclusive.

pic_init_qs_minus26 Specifies the initial value minus 26 of SliceQSY for all macroblocks in SP or SI slices.
The initial value is modified at the slice layer when a non-zero value of slice_qs_delta
is decoded. The value must be in the range of -26 to +25, inclusive.

chroma_qp_index_offset Specifies the offset to be added to QPY and QSY for addressing the table of QPC values
for the Cb chroma component. The value must be in the range of -12 to +12, inclusive.

second_chroma_qp_index_offset Specifies the offset to be added to QPY and QSY for addressing the table of QPC values
for the Cr chroma component. The value must be in the range of 12 to +12, inclusive.

When second_chroma_qp_index_offset is not present, it is assumed to be equal to
avc_chroma_qp_index_offset.

Table 4 pps_info Structure Flags (Cont.)

Parameter Description

16 of 22 Open Video Decode API

num_slice_groups_minus1 Specifies the number of slice groups for a picture minus 1. When
num_slice_groups_minus1 is equal to 0, all slices of the picture belong to the same slice
group.

0 = for H.264 main and high profiles.
0-7 = for H.264 baseline profile.

slice_group_map_type Specifies how the mapping of slice group map units to slice groups is coded. The value
must be in the range of 0 to 6, inclusive.

num_ref_idx_l0_active_minus1 Specifies the maximum reference index for reference picture list 0 to be used to decode
each slice of the picture in which list 0 prediction is used when
num_ref_idx_active_override_flag is 0 for the slice. When MbaffFrameFlag is 1,
num_ref_idx_l0_active_minus1 is the maximum index value for the decoding of frame
macroblocks, and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for
the decoding of field macroblocks. The value must be in the range of 0 to 31, inclusive.

num_ref_idx_l1_active_minus1 It has the same semantics as avc_num_ref_idx_l0_active_minus1 with l0 and list 0
replaced by l1 and list 1, respectively. The semantics are the same as for
num_ref_idx_l0_active_minus1.

slice_group_change_rate_minus1 Specifies the variable SliceGroupChangeRate, which determines the multiple (in number
of slice group map units) by which the size of a slice group can change from one picture
to the next. The value must be in the range of 0 to PicSizeInMapUnits – 1, inclusive.

The SliceGroupChangeRate variable is specified as follows:
SliceGroupChangeRate = slice_group_change_rate_minus1 + 1

reserved_16bit Reserved. Must be 0.

scaling_lists_4x4 [6][16] 4x4 quantization matrix data in zig-zag scan order.

scaling_lists_8x8 [2][64] The 8x8 quantization matrix data in zig-zag scan order.

frame_num The field is used as an identifier for pictures.
In H26.4, it is represented by log2_max_frame_num_minus4 + 4 bits in the bitstream.

frame_num_list[16] Not used. Must be 0.

curr_field_order_cnt_list[2] curr_field_order_cnt_list[0] corresponds to TopFieldOrderCnt in the H.264 specifi-
cation. curr_field_order_cnt_list[1] corresponds to BottomFieldOrderCnt in the
H.264 specification.
Determines the initial picture ordering for reference pictures in the decoding of B slices
to represent picture order differences between frames or fields
- for motion vector derivation in temporal direct mode,
- for implicit mode weighted prediction in B slices, and
- for decoder conformance checking.

field_order_cnt_list[16][2] Reserved. must be 0.

intra_flag Specifies the prediction mode type in a frame/field.

1 = Picture is coded in Intra prediction mode. It supposes that I-frames are coded in the
Intra prediction mode only.

0 = the flag specifies that the picture can be coded in Inter prediction mode.

reference Specifies whether this picture is used as the reference picture.

1 = Reference picture.
0 = Non-reference picture.

Table 4 pps_info Structure Flags (Cont.)

Parameter Description

Open Video Decode API 17 of 22

4.2.2 VC-1 picture_parameter_2 Structure
typedef struct
{

union{
struct {

unsigned int postprocflag : 1;
unsigned int pulldown : 1;
unsigned int interlace : 1;
unsigned int tfcntrflag : 1;
unsigned int finterpflag : 1;
unsigned int sps_reserved1 : 1;
nsigned int psf : 1;
unsigned int second_field : 1;
unsigned int sps_reserved2 : 24;

} sps_flag;
unsigned int flag;

} sps_info;

union {
struct {

unsigned int panscan_flag : 1;
unsigned int refdist_flag : 1;
unsigned int loopfilter : 1;
unsigned int fastuvmc : 1;
unsigned int extended_mv : 1;
unsigned int dquant : 2;
unsigned int vstransform : 1;
unsigned int overlap : 1;

Table 5 mvc Structure

Parameter Description

numViews Number of coded views.

viewID0 Base view ID.

mvcElements [] mvcElement_t structure array, allocation Must be numViews -1.

Table 6 mvcElement_t Structure

Parameter Description

viewOrderIndex View order index.

viewID ViewID of each view.

numOfAnchorRefsInL0 Number of Anchor inter-views in L0.

viewIDofAnchorRefsInL0[15] Anchor inter-view viewID in L0.

numOfAnchorRefsInL1 Number of Anchor inter-views in L1.

viewIDofAnchorRefsInL1[15] Anchor inter-view viewID in L1.

numOfNonAnchorRefsInL0 Number of Non-anchor inter-views in L0.

viewIDofNonAnchorRefsInL0[15] Non-anchor inter-view viewID in L0.

numOfNonAnchorRefsInL1 Number of Non-anchor inter-views in L1.

viewIDofNonAnchorRefsInL1[15] Non-anchor inter-view viewID in L1.

reserved [128] Not used, always 0.

18 of 22 Open Video Decode API

unsigned int quantizer : 2;
unsigned int extended_dmv : 1;
unsigned int maxbframes : 3;
unsigned int rangered : 1;
unsigned int syncmarker : 1;
unsigned int multires : 1;
unsigned int reserved : 2;
unsigned int range_mapy_flag : 1;
unsigned int range_mapy : 3;
unsigned int range_mapuv_flag : 1;
unsigned int range_mapuv : 3;
unsigned int vc1_pps_reserved : 4;

} pps_flag;
unsigned int flag;

} pps_info;

unsigned int picture_structure;
unsigned int chroma_format;
unsigned int reserved [128];

} VC1_picture_parameter_2;

The description of each field in the VC1_picture_parameter_2 data structure is given in Tables
7 to 9, below.

Table 7 sps_info Structure Flags

Parameter Description

postprocflag Indicates whether the syntax element POSTPROC is present in picture headers.
1 = Syntax element POSTPROC is present in picture headers.
0 = Syntax element POSTPROC is not present in picture headers.

pulldown Indicates whether the syntax elements RPTFRM, or TFF and RFF are present in picture headers.
1 = Syntax elements RPTFRM, or TFF and RFF are present in picture headers.
0 = Not present.

interlace 1 = Individual frames must be coded using the progressive or interlace syntax.
0 = Pictures must be coded as single frames using the progressive syntax.

tfcntrflag It is a frame counter flag.

1 = Indicates that the syntax element TFCNTR must be present in the advanced profile picture headers.
0 = Indicates that TFCNTR must not be present in the picture header.

finterpflag A frame interpolation flag that specifies if the syntax element INTERPFRM is present in the picture header.

1 = INTERPFRM is present in picture headers.
0 = INTERPFRM is not present in picture headers.

sps_reserved1 Corresponds to the RESERVED field in the VC-1 specification. This field must be set to 1. This one-bit flag
corresponds to the one-bit syntax element Reserved Advanced Profile Flag defined in the VC-1 specification.
The value 0 is SMPTE reserved.
Must be set to 1. Reserved Advanced Profile Flag.

psf Specifies the video source.

1 = The video source was Progressive Segmented Frame (PsF), and the display process treats the decoded
frames (field-pairs) as progressive.

0 = The display process can treat the decoded frames (field-pairs) according to the value of the INTERLACE
syntax element.

second_field Specifies whether the picture is the second field.

0 = The picture is a frame or the first field.
1 = The picture is the second field.

sps_reserved2 Reserved. Must be 0.

Open Video Decode API 19 of 22

In Table 8, unless indicated otherwise, the parameters correspond to the same-named field in the
VC-1 specification.

Table 8 pps_info Structure Flags

Parameter Description

panscan_flag 1 = specifies that pan scan regions are present for pictures within that entry point segment. The pan scan
region is a sub-region of the display region which may be used as an alternative presentation format. The
most common application is to display a 4:3 sub-region of 16:9 content.

0 = specifies that pan scan regions are not present.

refdist_flag A Reference Frame Distance Flag.

1 = specifies that the REFDIST syntax element is present in II, IP, PI or PP field picture headers.
0 = the REFDIST syntax element is not present.

loopfilter 1 = specifies that loop filtering is enabled.
0 = specifies that loop filtering is not enabled.

If the stream PROFILE is Simple, the LOOPFILTER must be 0.

fastuvmc A Fast UV Motion Compensation Flag. It controls the subpixel interpolation and rounding of color-difference
motion vectors.

1 = specifies that the color-difference motion vectors that are at quarter pel offsets are rounded to the nearest
half or full pel positions.

0 = no special rounding or filtering is done for color-difference.

If the stream Profile is Simple, this must be 0.

extended_mv The Extended Motion Vector Flag.
Specifies whether extended motion vectors are enabled (1) or disabled (0).
This bit must be set to 0 for the Simple Profile.
For the Main Profile, the extended motion vector mode must indicate the possibility of extended motion vec-
tors in P and B pictures.

dquant Specifies whether or not the quantization step size can vary within a frame.

0 = only one quantization step size (i.e. the frame quantization step size) is used per frame.
1 or 2 = the quantization step size may vary within the frame.

In Simple profile, DQUANT must be 0.
In the Main profile, if MULTIRES = 1, DQUANT must be 0.

vstransform Specifies whether variable-sized transform coding is enabled for the sequence.

1 = variable-sized transform coding must be enabled.
0 = variable-sized transform coding must not be enabled.

overlap Specifies whether Overlapped Transforms are used.

1 = Overlapped Transforms can be used.
0 = Overlapped Transforms are not used.

quantizer Specifies the quantizer used for the sequence.

0 = Quantizer implicitly specified at frame level.
1 = Quantizer explicitly specified at frame level.
2 = Nonuniform quantizer used for all frames.
3 = Uniform quantizer used for all frames.

extended_dmv 1 = specifies that extended differential motion vector range is signaled at the picture layer for the P and B
pictures within the entry point segment.

0 = specifies that extended differential motion vector range is not signaled.

20 of 22 Open Video Decode API

maxbframes Specifies the maximum number of consecutive B frames between I or P frames.

0 = there are no B frames in the sequence.
0-7 = this number of B Frames can be present in the sequence.

rangered Specifies whether range reduction is used for each frame.

1 = each frame header must contain a syntax element, RANGEREDFRM, that indicates whether range reduction
is used for that frame.

0 = the syntax element RANGEREDFRM is not present, and range reduction must not used.
RANGERED must be set to zero in Simple profile.

syncmarker Indicates whether synchronization markers can be present in the bitstream.
In the main profile, the synchronizations markers can be present if SYNCMARKER = 1; they can not be present
if SYNCMARKER = 0.
In simple profile, this must be 0.

multires A Multiresolution Coding flag that specifies whether the frames can be coded at smaller resolutions than the
specified frame resolution. Resolution changes are allowed only on I pictures.

1 = the frame level RESPIC syntax element must be present, indicating the resolution for that frame.
0 = RESPIC must not be present.

reserved1 The field corresponds Reserved6 field in the VC-1 specification.
Controls the video stream. Must be set to 1.

range_mapy_flag The Range Mapping Luma Flag. Specifies whether RANGE_MAPY is present in the entry header.

1 = RANGE_MAPY is present in the entry header.
0 = RANGE_MAPY is not present in the entry header.

range_mapy The Range Mapping Luma value must be present if range_mapy_flag is set to 1.
The value of range_mapy must be in the range of 0 to 7, inclusive.
If this syntax element is present, the luma components of the decoded pictures within the entry point segment
must be scaled according to the formula:

Y[n] = CLIP ((((Y[n] – 128) * (RANGE_MAPY + 9) + 4) >> 3) + 128);

range_mapuv_fla
g

The Range Mapping Color-Difference Flag. Specifies whether RANGE_MAPUV is present in the entry header.

1 = RANGE_MAPUV is present in within the entry header.
0 = RANGE_MAPUV is not present in within the entry header.

range_mapuv The Range Mapping Color-Difference value must be present if range_mapy_flag is set to 1.
The value of range_mapuv must be in the range of 0 to 7, inclusive.
If this syntax element is present, the color-difference components of the decoded pictures within the entry
point segment must be scaled according to the formula:

Cb[n] = CLIP ((((Cb[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);
Cr[n] = CLIP ((((Cr[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);

pps_reserved2 Reserved. Must be 0.

Table 8 pps_info Structure Flags (Cont.)

Parameter Description

Open Video Decode API 21 of 22

In Table 9, lists and briefly describes the common fields in the VC1_picture_parameter_2 data
structure.

4.3 OVD_BITSTREAM_DATA and OVD_SLICE_DATA_CONTROL

This section describes the slice data and the slice control data layout that the application must
construct for the OVD interface.

4.3.1 OVD_SLICE_DATA_CONTROL Structure
typedef struct
{
 unsigned int SliceBitsInBuffer;
 unsigned int SliceDataLocation;
 unsigned int SliceBytesInBuffer;
 unsigned int reserved[5];

} ovd_slice_data_ctrl;

4.3.2 Bitstream Data Buffer and Slice Data Control Data Layout

OVD_BITSTREAM_DATA contains blocks of compressed bitstream data (see Figure 3). The Decoder
(host) stores the data blocks size/location information in OVD_SLICE_DATA_CONTROL. Every data
block has its own control data structure. OVD_BITSTREAM_DATA must be 128 byte aligned.

Table 9 Common Fields in VC1_picture_parameter_2 Structure

Parameter Description

picture_structu
re

Specifies the type of picture:

1 = top field.
2 = bottom field.
3 = frame.

chroma_format Specifies the chroma sampling relative to the luma sampling.

0 = monochrome.
1 = 4:2:0.
2 = 4:2:2.
3 = 4:4:4.

When chroma_format is not present, it is assumed to be 1 (4:2:0 chroma format).

reserved [128] Reserved. Must be 0.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Other names are for informational pur-
poses only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

22 of 22 Open Video Decode API

For Stream Computing:
URL: www.amd.com/stream
Questions: streamcomputing@amd.com
Developing: developer.amd.com/support
Forum: www.amd.com/streamdevforum

Figure 3 OVD_BITSTEAM_DATA and OVD_SLICE_DATA_CONTROL Example for H.264

BITSTREAM_DATA
for H.264

SLICE_DATA_CONTROL
for H.264

control data for NAL1

control data for NAL2

control data for NAL3

NAL1

NAL2

NAL3

Padding to have the data
buffer128 byte aligned

http://developer.amd.com/support/KnowledgeBase/pages/HelpdeskTicketForm.aspx?Category=2&SubCategory=8

	1 Overview
	Figure 1 Video Pipeline Possibilities with Multiple GPUs and Multiple APIs

	2 Interoperability of OpenCL and OpenVideo
	2.1 Platform Context
	2.2 Platform Memory Object
	2.3 Platform Event Object
	Figure 2 Operational Flow of OpenVideo Decode API with OpenCL Processing

	3 OpenVideo Decode API Functions
	Table 1 Function Listing

	4 Decode Data Buffers
	4.1 OVD_PICTURE_PARAMETER_1
	Table 2 Data Structure Fields

	4.2 PICTURE_PARAMETER_2
	Table 3 sps_info Structure Flags
	Table 4 pps_info Structure Flags
	Table 5 mvc Structure
	Table 6 mvcElement_t Structure
	Table 7 sps_info Structure Flags
	Table 8 pps_info Structure Flags
	Table 9 Common Fields in VC1_picture_parameter_2 Structure

	4.3 OVD_BITSTREAM_DATA and OVD_SLICE_DATA_CONTROL
	Figure 3 OVD_BITSTEAM_DATA and OVD_SLICE_DATA_CONTROL Example for H.264

