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TAKING A REALISTIC LOOK AT THE APU

GPUs are not magic

– We’ve often heard about 100x performance improvements

– These are usually the result of poor CPU code

The APU offers a balance

– GPU cores optimized for arithmetic workloads and latency hiding

– CPU cores to deal with the branchy code for which branch prediction and out of order execution are so 

valuable

– A tight integration such that shorter, more tightly bound, sections of code targeted at the different styles 

of device can be linked together

– However, not without costs!
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CPUS AND GPUS

Different design goals:

– CPU design is based on maximizing performance of a single thread

– GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:

– Transistors are dedicated to branch prediction, out of order logic and caching to reduce latency to 

memory , to allow efficient instruction prefetching and deep pipelines (fast clocks)

GPU use of area:

– Transistors concentrated on ALUs and registers

– Registers store thread state and allow fast switching between threads to cover (rather than reduce) 

latency
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COSTS

The CPU approach:

– Requires large caches to maximize the number of memory operations caught

– Requires considerable transistor logic to support the out of order control

The GPU approach:

– Requires wide hardware vectors, not all code is easily vectorized

– Requires considerable state storage to support active threads

– Note: we need not pretend that OpenCL or CUDA are NOT vectorization

 The entire point of the design is hand vectorization

These two approaches suit different algorithm designs

They require different hardware implementations
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THE TRADEOFFS IN PICTURES

AMD Phenomtm II X6:

– 6 cores, 4-way SIMD (ALUs) 

– A single set of registers

– Registers are backed out to memory on a thread switch, and this 

is performed by the OS

AMD Radeontm HD6970:

– 24 cores, 16-way SIMD (plus VLIW issue, but the Phenom

processor does multi-issue too), 64-wide SIMD state

– Multiple register sets (somewhat dynamic)

– 8, 16 threads per core



7 |  PAPA |  June 5, 2011  |  Public

COMBINING THE TWO

So what did we see?

– Diagrams were vague, but…

– Large amount of orange! Lots of register state

– Also more green on the GPU cores

The APU combines the two styles of core:

– The E350 has two “Bobcat” cores and two “Cedar”-like cores, for example

– 2- and 8-wide physical SIMD
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THINKING ABOUT 

PROGRAMMING
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OPENCL, CUDA, ARE THESE GOOD MODELS?

Designed for wide data-parallel computation

– Pretty low level

– There is a lack of good scheduling and coherence control

– We see “cheating” all the time: the lane-wise programming model only  becomes efficient when we 

program it like the vector model it really is, making assumptions about wave or warp synchronicity

However: they’re better than SSE!

– We have proper scatter/gather memory access

– The lane wise programming does help: we still have to think about vectors, but it’s much easier to do 

than in a vector language

– We can even program lazily and pretend that a single work item is a thread and yet it still (sortof) works

 (NVIDIA trades ALUs against making this work well. An interesting design point, but if we have a CPU around do we 

need that?)
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)

– Iterate to produce a sum in each block

– Reduce across threads

– Vectorize

float sum( 0 )

for( i = n to n + b ) 

sum += input[i]

float reductionValue( 0 )

for( t in threadCount )

reductionValue += t.sum

float4 sum( 0, 0, 0, 0 )

for( i = n/4 to (n + b)/4 ) 

sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

– Iterate to produce a sum in each block

– Reduce across threads

– Vectorize (this bit may be a different kernel dispatch given current models)

float sum( 0 )

for( i = n to n + b ) 

sum += input[i]

float reductionValue( 0 )

for( t in threadCount )

reductionValue += t.sum

float64 sum( 0, …, 0 )

for( i = n/64 to (n + b)/64 ) 

sum += input[i]

float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars 

ALUs, apparently though not really independent, with varying degree of 

hardware assistance (and hence overhead):

float sum( 0 )

for( i = n/64 to (n + b)/64; i +=  64) 

sum += input[i]

float scalarSum = waveReduceViaLocalMemory(sum)
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THEY DON’T SEEM SO DIFFERENT!

More blocks of data

– More cores

– More threads

Wider threads

– 64 on high end AMD GPUs

– 4/8 on current CPUs

Hard to develop efficiently for wide threads

 Lots of state, makes context switching and stacks 

problematic

float64 sum( 0, …, 0 )

for( i = n/64 to (n + b)/64 ) 

sum += input[i]

float scalarSum = waveReduce(sum)

float4 sum( 0, 0, 0, 0 )

for( i = n/4 to (n + b)/4 ) 

sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w
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THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On GPU cores:

– We need a lot of data parallelism

– Algorithms that can be mapped to multiple cores and multiple threads per core 

– Approaches that map efficiently to wide SIMD units

– So a nice simple functional “map” operation is great!

This is basically the OpenCLTM model

Array

O

p

O

p

O

p …

Array.map(Op)



14 |  PAPA |  June 5, 2011  |  Public

THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On CPU cores:

– Some data parallelism for multiple cores

– Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters

 Does AVX change this?

– High clock rates and caches make serial execution efficient

– So in addition to the simple map (which boils down to a for loop on the CPU) we can do complex task 

graphs
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SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array 
representing
very large 

dataset

Loop 1M 
times for 
1M pieces 

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data 
parallelism.  Benefits from 
closer coupling between 

CPU & GPU

Discrete GPU configurations suffer from 

communication latency.

Nested data parallel/braided parallel code 

benefits from close coupling.

Discrete GPUs don’t provide it well.

But each individual core isn’t great at certain 

types of algorithm…
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CUE APU

Tight integration of narrow and wide vector kernels

Combination of high and low degrees of threading

Fast turnaround

– Negligible kernel launch time

– Communication between kernels

– Shared buffers

For example:

– Generating a tree structure on the CPU cores, processing the scene on the GPU cores

– Mixed scale particle simulations (see a later talk)

CPU 

kernel

GPU 

kernel

Data
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SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array 
representing
very large 

dataset

Loop 1M 
times for 
1M pieces 

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data 
parallelism.  Benefits from 
closer coupling between 

CPU & GPU
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QUESTIONS
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and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no 

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to 

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO 

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS 

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY 

DISCLAIMED.  IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL 

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF 

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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